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Exact chirped soliton solutions of a generalized nonlinear Schrödinger equation with the cubic-quintic
nonlinearities as well as the self-steeping were obtained using a variable parametric method. It was found that
the formation of solutions is determined by the sign of a joint parameter solely. By performing numerical
simulations, the chirped solutions are stable under perturbations.
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The nonlinear Schrödinger �NLS� equation is widely ap-
plied for the study of solitons in nonlinear optics and plasma
physics as well as nonlinear dispersive water waves �1,2�.
Theoretically, there exist many methods for solving the NLS
equation, such as Darboux-Bäcklun transform �DBT�, in-
verse scattering transform �IST� �2�, self-similarity technique
�3�, and variational approach �4,5�. In general, DBT and IST
can obtain N-soliton solution to the NLS equation through a
long procedure. Self-similarity technique is broadly appli-
cable for finding self-similar solutions to a range of nonlinear
differential equations. Variational approach is a useful ap-
proximation which generally solves a wide class of nonlinear
equations.

In this paper, a variable parametric method is adopted for
solving a generalized nonlinear Schrödinger �GNLS� equa-
tion with the cubic-quintic nonlinearities as well as the self-
steeping. We will show that there exist exact chirped solu-
tions, controlled by the sign of the joint parameter �=�2

+8�k. Employing the Drude model, we verify numerically
the stability of the chirped solutions.

The NLS equation is widely used for descriptions to the
propagation of picosecond pulses in the literature �1�. It has
been demonstrated that when the pulses are shorter than 100
femtoseconds, the higher order effects in nonlinear media
become important, and therefore the governing equation
should still include third-order dispersion �TOD�, the self-
steepening, and the self-frequency shift �6�. It is interesting
that the propagation of ultrashort pulses at least a few tens of
optical cycles in duration can be described by the GNLS
equation �7�

i�� +
k

2
��� + i�����2��� + ����2� + 3����4� = 0, �1�

where ��� ,�� is the complex envelope of the electric field, �
and � are the retarded coordinates, and k, �, �, and � are the
real parameters related to group velocity dispersion �GVD�,
self-steepening, cubic nonlinearity, and quintic nonlinearity
�1�. Recently, the model �1� is used to characterize wave
propagation in a negative index material �NIM�. In this situ-
ation, the sign of GVD can be positive or negative and self-
steepening characterizes the front of the pulse, different from
the case of ordinary materials �7�.

In the case when �=�=0, Eq. �1� can be reduced into the
basic NLS equation, including the GVD and the cubic non-
linearity �1�. It has been well-known that this NLS equation
admits bright or dark soliton-type pulse propagation. For �
=0, it becomes the derivative NLS �DNLS� equation govern-
ing the propagation of NLS soliton in the presence of Kerr
dispersion �8�. When ��0, Eq. �1� cannot pass the Painléve
PDE test �9�, and cannot be solved by employing DBT or
IST. To the best of our knowledge, exact analytic solutions to
model �1� have been absent. In this work, we find exact
analytic solutions to Eq. �1� using a method of variable pa-
rameters. The main steps are as follows: First, we choose the
soliton solution to the basic NLS equation as a trial solution,
where part parameters are the functions of the longitudinal
and transverse coordinates. Second, we substitute the trial
solution into the equation considered and find these paramet-
ric functions.

According to the standard solution to the basic NLS equa-
tion �1�, the bright solution to Eq. �1� in the form takes the
compact expression

���,�� = ���,��sech�	� + 
��ei���,��, �2�

where 	 and 
 are real parameters, and the amplitude ��� ,��
and the phase ��� ,�� are the real variable functions of the
retarded coordinates � and �. The phase shift ��� ,�� reads

���,�� = E� + F� + ���,�� , �3�

where E and F are real parameters. For the basic NLS equa-
tion, the phase shift � is a constant parameter. However,
when there are higher order terms in the NLS equation,
��� ,�� is generally a nonlinear function of the retarded co-
ordinates � and �. Substituting Eqs. �2� and �3� into Eq. �1�,
requiring that the real and imaginary parts of each term be
separately equal to zero, and considering that Eq. �2� for
arbitrary � and � satisfies Eq. �1�, we obtain the following
system of equations:

�1 − q2��1

2
k	�qq + k	�q

�q

�
+ 3���q�

− q�2k	�q + 3��2� = 0, �4�
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�1 − q2��1

2
k	2�qq

�
−

1

2
k	2�q

2 − �	�2�q + 3��4�
− �� − �E��2 − 2k	2q

�q

�
− k	2 = 0, �5�

where q=tanh�	�+
��, and there exist the relations


 + k	E = 0, 2F − k	2 + kE2 = 0. �6�

It should be stressed that Eqs. �4� and �5� are a set of coupled
differential equations. Owing to an extended variable sepa-
ration method in terms of the ratio q / �1−q2�, we can split
Eq. �4� into two equations in the form

1

2
k	�qq + k	�q

�q

�
+ 3���q = qf�q� , �7�

2k	�q + 3��2 = �1 − q2�f�q� , �8�

where f�q� is real. Combining Eqs. �7� and �8�, we easily find
the expression, f�q�=D�−2�1−q2�−3. Here, D is an integral
constant. Considering Eqs. �4� and �8�, one has 2k	�q
+3��2=D�−2�1−q2�−2. When q→ 
1, D=0 must hold. By
applying this result f�q��0, the substitution of Eq. �8� into
Eq. �5� yields

4k2	2�1 − q2�
�qq

�
− 16k2	2q

�q

�
+ 3��1 − q2��4

+ 8k��2 − 8k2	2 = 0, �9�

where �=�2+8�k and �=�−�E. To look for the solution to
Eq. �9�, we introduce the transformation

��q� =
1

	1 + cq2
g , �10�

where c�−1 and g are real. If g is the function of q, g can be
expanded into a Maclaurin series. Substituting Maclaurin se-
ries for g into Eq. �10�, we reexpress Eq. �9� and make the
coefficient of each power of q equal to zero. As a result, g
can only be constant and satisfies

g2 = −
k

�
	2�c − 1� , �11�

�	2�c − 1�2 − 4c�2 = 0. �12�

Apparently, the sign of the constant c is the same as the joint
parameter �, relating to �, k, and �. Now, we discuss three
cases separately.

�i� �=�2+8�k�0. In Eq. �12�, the parameter c is posi-
tive. Using Eqs. �11� and �12�, we find

� = − k�B2 − A2�k	�, g = − 2Bk�−1/4. �13�

Here, c=B2 /A2 and 	=−2ABk. The real A and B are arbi-
trary. By combining Eqs. �13� and �10� with �8�, the soliton
solution to Eq. �1� is given by

�+��,�� =
	�−1/4 sech�	� + 
��

	A2 + B2q2

� exp
i�E� + F� +
3�

	�
tan−1�B

A
q� + �0�
 ,

�14�

where E= ��+ �B2−A2�k	�� /�, 
=2ABk2E, and F=k�	2

−E2� /2. It is pointed out that for �=0, the solution of Eq.
�14� gives the same result in Ref. �7�. The resultant chirp,
including linear and nonlinear contributions, can be obtained
readily

�w+��� = − E +
6A2B2k� sech2�	� + 
��

	��A2 + B2 tanh2�	� + 
���
. �15�

�ii� �=�2+8�k�0, i.e., −1�c�0. In this sense, the use
of c=−B2 /A2�−1 results in the second solution to Eq. �1�
and the associated chirp

�−��,�� =
	���−1/4 sech�	� + 
��

	A2 − B2q2

� exp
i�E� + F� +
3�

	���
tanh−1�B

A
q� + �0�
 ,

�16�

�w−��� = − E +
6A2B2k� sech2�	� + 
��

	����A2 − B2 tanh2�	� + 
���
, �17�

where E= ��− �B2+A2�k	���� /�, and the others are the same
as those in the case �i�.

�iii� �=�2+8�k=0, i.e., c=0. From Eqs. �8�–�10�, under
the condition that ��−�E�k�0 there also is a soliton solu-
tion to Eq. �1� as follows:

�0��,�� = 		 k

� − �E
sech�	� + 
��

� exp�i�E� + F� −
3�	

2�� − �E�
q + �0�� ,

�18�

where E=−k	 /
 and F=k	2�
2−k2� /2
2 are dependent on
free parameters 	 and 
. The chirp takes an expression

�w0��� = − E +
3�	2

2�� − �E�
sech2�	� + 
�� . �19�

We note that in the chirped expressions, Eqs. �15�, �17�, and
�19�, the nonlinear chirps are determined by the cubic or
quintic nonlinearity and pause self-steepening.

Next, we apply model �1� to NIMs so as to illustrate
stability of solition solutions �14�, �16�, and �18�. For
the propagation of ultrashort pulses in NIMs, the GVD,
self-steepening, cubic nonlinearity, and quintic nonlinearity
are expressed as k= 1

�n � 1
Vg

2 −��−� ���+���
4� �, �=− ��3�

2Vgn2 ��
−Vgn��+���, �= 1

2n����3�, and �=− 1
24n3 �����3��2, respec-
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tively �7�. Here Vg= 2n
��+�� , �=2��̃, �= ���̃���̃��

��̃
, ��

= �2��̃���̃��
��̃2 , �= ���̃���̃��

��̃
, and ��= �2��̃���̃��

��̃2 , where �, �, n, ��3�,
and �̃ denote dielectric susceptibility, effective magnetic per-
meability, index of refraction, the coefficient of cubic non-
linearity, and normalized frequency, respectively. It is par-
ticularly stressed that one must be careful about applying the
solution �16� to research nonlinear pulse propagation in
NIMs, since the range of validity of Eq. �1� cannot be ex-
tended to regions where n→0 �7,10�.

The issue of stability of solitary solutions is an interesting
and complex topic. In general, bright soliton solutions to the
one-dimensional cubic-quintic nonlinear Schrödinger equa-
tion are known to be stable �11�. Since Eq. �1� contains such
cubic-quintic nonlinearities, as well as a derivative nonlin-
earity �i.e., self-steepening�, it is reasonable to conjecture
that the analytic solutions �14�, �16�, and �18� should be
stable. To confirm the stability of the soliton solutions by
directly solving Eq. �1� with the split-step Fourier method
�12�, we cite a Drude model described by ���̃�=1− �̃−2 and
���̃�=1−0.64�̃−2 with negligible absorption �13�. Figure 1

shows the control parameter �, the normalized frequency �̃,
and ranges of the solutions for ��3�=10−10. The normalized
frequency �̃0=0.7263 is found for �=0, corresponding to
the solution �18�. There exist the solutions �+�� ,�� and
�−�� ,�� in the regimes of �̃��̃0 and �̃��̃0, respectively.
Based on this concrete model, when �̃0=0.7 and ��3�

=10−10, the typical values of the parameters in Eq. �1� are as
follows: k=0.1168, �=−3.5411, �=1.1926, and �=9.5489
�10−22. Figure 2 shows the amplitude of the pulse for A
=1, B=0.4, and �0=0 in the case of ��0. The insets dis-
play the comparison of the analytical results �14� and �15�
with the numerical simulations. For convenience, we have
normalized the solution satisfying �→�1/4� / �2Bk�. Mean-
while, time is normalized by 2B��2k2 /��1/4, too. It is clear
that our analytical results �14� and �15� are in excellent
agreement with the numerical simulations, as shown in the
insets. Furthermore, we also look for the evolution of the
initial pulse by adding Gaussian white noise and by evolving
from an initial chirped Gaussian pulse for multiplication of
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FIG. 1. Control parameter � vs normalized frequency �̃ for a
NIM with �=0 and ��3�=10−10.
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FIG. 2. Evolution of an initial pulse described as the exact so-
lutions �14� and �15� for A=1, B=0.4, �0=0, and �̃=0.7 in the
regime of ��0. We have normalized the solution and time satis-
fying �→�1/4� / �2Bk� and 2B��2k2 /��1/4, respectively. Insets
show the comparison of our analytical results �15� and �16� at z
=500 �solid line� with the numerical simulations �circle� and the
initial profile �dotted line�.
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FIG. 3. Evolution of an initial pulse that is the same as in Fig. 2
except for considering the multiplicative white noise with the
strength �1=10−3 and the additive white noise strength �2=0.1. We
normalize the solution and time as in Fig. 2.
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FIG. 4. Evolution of an initial pulse that is the same as in Fig. 1
except for multiplication of the exact solution by exp�−0.1�	��2�.
Here, the solution and time are normalized, too.
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the exact solution by exp�−0.1�	��2� shown in Figs. 3 and 4.
By performing numerical simulations, we demonstrate the
stability of those nonlinearly chirped pulses, corresponding
to the analytical results �16�–�19�. From the evolution of
waves, we find that the chirped solution and the background,
are quite stable under finite perturbations.

In conclusion, exact chirped soliton solutions of a gener-
alized nonlinear Schrödinger equation with cubic-quintic

nonlinearities as well as self-steeping have been found ana-
lytically, owing to a variable parametric method. The ana-
lytic results showed that the formation of solutions can be
determined by the sign of the joint parameter �=�2+8�k. In
NIMs, the sign of the GVD and k can be positive or negative,
thereby the present solutions could exist. In the Drude ap-
proximation, numerical simulations indicated that the
chirped solutions are quite stable under finite perturbations.
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